x

Orbits

Satellites
  • Planets and Satellites are kept in orbit by gravitational forces
  • We can find the time taken for a satellite to make one orbit by rearranging equations.
  • \[\frac{mv^2}{r}=\frac{GMm}{r^2}\]
  • \[v^2=\frac{GM}{r}\]
  • \[v=\sqrt{ \frac{GM}{r} }\]
  • \[v=\sqrt{ \frac{GM}{r} }\]
  • \[\frac{2\pi r}{T}=\sqrt{ \frac{GM}{r} }\]
  • \[2\pi r=\sqrt{ \frac{GM}{r} }T\]
  • \[T=\frac{2\pi r}{\sqrt{ \frac{GM}{r} }}\]
  • \[T=\frac{2\pi^2r^2}{\frac{GM}{r}}\]
  • \[T^2=\frac{4\pi^2r^3}{GM}\]
  • Kepler's third law: \(\(T^2=\left( \frac{4\pi^2}{GM} \right)r^3\)\)
Worked example
  • Mean distance of \(4.5\times10^{12}m\) from the sun
  • Mass of the sun is \(1.99\times 10^{30}\)
  • \(T^2=\left( \frac{4\pi^2}{(6.67\times 10^{-11})\times(1.99\times 10^{30})} \right)\times(4.5\times 10^{12})^3\)
  • \(T=5.206\times 10^9\) seconds or \(165\) earth years.
Worked Example 2
  • Radius of earth = \(6.370\times10^6\)
  • T= 24 hours = \(86400\) seconds
  • Mass of earth = \(5.97\times10^{24}\)
  • Use \(T^2=\left( \frac{4\pi^2}{GM} \right)r^3\)
  • Rearrange to find \(r\), then subtract the radius of the earth.
Escape Velocity
\[E_{k}=E_{GV}$$ $$\frac{1}{2}mv^2=\frac{GMm}{r}$$ $$mv^2=\frac{2GMm}{r}$$ $$v^2=\frac{2GM}{r}$$ $$v=\sqrt{ \frac{2GM}{r}}\]
Deriving the equation for the angular motion of an orbiting satellite
  • \(v=\sqrt{ \frac{GM}{r} }\)
  • \(v=\omega r\)
  • \(\omega r=\sqrt{ \frac{GM}{r} }\)
  • \(\omega=\sqrt{ \frac{GM}{r^3} }\)
Questions
  1. a) Gravitational field strength is a scalar quantity.
    b)
  2. a) 9.81 N/kg
    b) 19.62 N
    c) -58.86
    d)kinetic
    e) gravitational potential
  3. 180J
  4. a) -0.0667
    b) -0.3335
    c) \(600\times -0.03335=-20.01\)
    d) outwards
  5. a) 1.08
    b) 42226910.18m
  6. a) 9.81344 N/kg
    b) 8.1102 N/kg
Left-click: follow link, Right-click: select node, Scroll: zoom
x