Radian Measure
sin(x) and cos(x)
- \(\sin(x)\)
- \(\cos(x)\)
Find the exact values of:
- \(\sin\left( \frac{\pi}{6} \right)=\frac{1}{2}\)
- \(\cos\left( \frac{\pi}{2} \right)=0\)
- \(\sin\left( \frac{\pi}{4} \right)=\frac{1}{\sqrt{ 2 }}\)
- \(\tan\left( \frac{\pi}{3} \right)=\sqrt{ 3 }\)
- \(\cos\left( \frac{\pi}{3} \right)=\frac{1}{2}\)
- \(\sin\left( \frac{2\pi}{3} \right)=\frac{\sqrt{ 3 }}{2}\)
- \(\tan\left( \frac{3\pi}{4} \right)=-\tan\left( \frac{\pi}{4} \right)=-1\)
- \(\cos\left( \frac{5\pi}{6} \right)=-\cos \left( \frac{\pi}{6} \right)=-\frac{\sqrt{ 3 }}{2}\)
- \(\tan\left( \frac{5\pi}{3} \right)=-\tan\left( \frac{\pi}{3} \right)=-\sqrt{ 3 }\)
- \(\cos\left( \frac{5\pi}{4} \right)=-\cos\left( \frac{\pi}{4} \right)=-\frac{\sqrt{ 2 }}{2}\)
- \(\sin\left( -\frac{\pi}{6} \right)=-\frac{1}{2}\)
- \(\tan\left( -\frac{5\pi}{6} \right)=\tan\left( \frac{\pi}{6} \right)=\frac{\sqrt{ 3 }}{3}\)
- \(\sin 3\pi=\sin \pi=0\)
Degrees to Radians
- \(180^{\circ}=\pi\)
- \(30^{\circ}=\frac{\pi}{6}\)
- \(45^{\circ}=\frac{\pi}{4}\)
- \(720^{\circ}=4\pi\)
- \(18^{\circ}=\frac{\pi}{10}\)
- \(120^{\circ}=\frac{2\pi}{3}\)
- \(15^{\circ}=\frac{\pi}{12}\)
- \(40^{\circ}=\frac{4\pi}{18}\)
- \(270^{\circ}=\frac{3\pi}{2}\)
- \(7.5^{\circ}=\frac{\pi}{24}\)
- \(144^{\circ}=\frac{4\pi}{5}\)
- \(220^{\circ}=\frac{11\pi}{9}\)
Radians to Degrees
- \(2\pi=180^{\circ}\)
- \(\frac{\pi}{3}=60^{\circ}\)
- \(\frac{\pi}{2}=90^{\circ}\)
- \(\frac{3\pi}{4}=135^{\circ}\)
- \(\frac{\pi}{18}=10^{\circ}\)
- \(\frac{\pi}{30}=6^{\circ}\)
- \(\frac{5\pi}{6}=150^{\circ}\)
- \(\frac{\pi}{8}=22.5^{\circ}\)
- \(3\pi=420^{\circ}\)
- \(\frac{2\pi}{15}=25^{\circ}\)
- \(\frac{7\pi}{3}=420^{\circ}\)
- \(\frac{9\pi}{20}=81^{\circ}\)