x

The Trapezium Rule

The Trapezium Rule
\[\int ^b_{a}y \, dx =\frac{1}{2}h(y_{0}+2(y_{1}+y_{2}+y_{3}+y_{n-1})+y_{n})$$ $$h=\frac{b-a}{n}\]
Example

Line is \(y=\sec x\) between \(0\) and \(\frac{\pi}{3}\)

| \(x\) | \(0\) | \(\frac{\pi}{12}\) | \(\frac{\pi}{6}\) | \(\frac{\pi}{4}\) | \(\frac{\pi}{3}\) |
|---|---|-------|-------|-------|------|
| \(y\) | \(1\) | \(1.035\) | \(1.155\) | \(1.414\) | \(2\) |

- Using trapezium rule:

\(\(\int _{a}^by \, dx = \frac{1}{2}\times \frac{\pi}{12}[1+2(1.035+1.155+1.414)+2]=\frac{\pi}{24}[10.208]=1.336\dots=1.34\text{ to 2dp}\)\)

Ex 11I Q1

Line is \(y=\sqrt{ 1+\tan x }\) between \(0\) and \(\frac{\pi}{3}\)

| \(x\) | \(0\) | \(\frac{\pi}{12}\) | \(\frac{\pi}{6}\) | \(\frac{\pi}{4}\) | \(\frac{\pi}{3}\) |
|---|---|-------|-------|-------|------|
| \(y\) | \(1\) | \(1.1233\) | \(1.2559\) | \(1.3362\) | \(1.6529\) |

- Using trapezium rule and values for \(0\), \(\frac{\pi}{6}\) and \(\frac{\pi}{3}\):

\(\(\int _{a}^by \, dx = \frac{1}{2}\times \frac{\pi}{6}(1+2(1.2559)+1.6529)=\frac{\pi}{12}\times5.1647=1.3521\dots=1.352\text{ to 4sf}\)\)

- Using trapezium rule and values for \(0\), \(\frac{\pi}{12}\), \(\frac{\pi}{6}\), \(\frac{\pi}{4}\) and \(\frac{\pi}{3}\):

\(\(\int _{a}^by \, dx = \frac{1}{2}\times \frac{\pi}{12}(1+2(1.1233+1.2559+1.3362)+1.6529)=\frac{\pi}{24}\times_{1}0.0837=1.31995\dots=1.320\text{ to 4sf}\)\)

Ex 11I Q2

Line is \(y=\cos\frac{5\theta}{2}\) between \(-\frac{\pi}{5}\) and \(\frac{\pi}{5}\)

| \(x\) | \(-\frac{\pi}{5}\) | \(-\frac{\pi}{10}\) | \(0\) | \(\frac{\pi}{10}\) | \(\frac{\pi}{5}\) |
|---|---|-------|-------|-------|------|
| \(y\) | \(0\) | \(\frac{\sqrt{ 2 }}{2}\) | \(1\) | \(\frac{\sqrt{ 2 }}{2}\) | \(0\) |

- Using trapezium rule and all values in the table:

\(\(\int _{a}^by \, dx = \frac{1}{2}\times\frac{\pi}{10}\left( 2\left( \frac{\sqrt{ 2 }}{2}+1+\frac{\sqrt{ 2 }}{2} \right) \right)=\frac{\pi}{10}(1+\sqrt{ 2 })=0.75845\dots=0.758\text{ to 3dp}\)\)

- Trapezium rule produces an underestimate due to trapezium lines going under the curve


\(\(\int ^{\frac{\pi}{5}}_{-\frac{\pi}{5}} \cos\frac{5\theta}{2}\, dx =\left[ \frac{2}{5}\sin\frac{5\theta}{2} \right]^{\frac{\pi}{5}}_{-\frac{\pi}{5}}=\frac{2}{5}--\frac{2}{5}=\frac{4}{5}=0.8\)\)


\(5.25\% \text{ error}\)

Left-click: follow link, Right-click: select node, Scroll: zoom
x