x

Higher Derivatives

Higher Derivatives
  • Higher Derivatives involves finding 3rd and higher derivatives of functions.

    \(\(\frac{d}{dx}uv=v \frac{du}{dx}+u \frac{dv}{dx}\)\)
    \(\((uv)^{'}=u(v)^{'}+(u)^{'}v\)\)
\(y=\ln(1-x)\), find \(\frac{d^3y}{dx^3}\) when \(x=\frac{1}{2}\)
  • \(\frac{dy}{dx}\ln(1-x)=\frac{1}{1-x}\times \frac{dy}{dx}(1-x)\)
  • \(=-\frac{1}{1-x}\)
  • \(\frac{dy}{dx}\left( -\frac{1}{1-x} \right)=\frac{1}{x-1}\)
  • \(\frac{d^2y}{dx^2}=-(x-1)^2\)
  • \(\frac{d^3y}{dx^3}=2(x-1)^3\)
  • Find when \(x=\frac{1}{2}\)
  • \(=2\left( \frac{1}{2}-1 \right)^{-3}\)
  • \(=2\left( -\frac{1}{2} \right)^{-3}\)
  • \(=2(-8)\)
  • \(=-16\)
\(f(x)=e^{x^{2}}\)

a) Show that \(f'(x)=2xf(x)\)
- \(e^{x^2}=e^{2x}\)
- \(\frac{dy}{dx}=2xe^{2x}\)
- \(\frac{dy}{dx}=2xe^{x^2}\)
- \(f'(x)=2xf(x)\)
b) Show that:
i) \(f''(x)=2f(x)+2xf'(x)\)
- Using product rule: \((2\times f(x))+(2x\times f'(x))\)
ii) $$

Left-click: follow link, Right-click: select node, Scroll: zoom
x