x

Solving Binomial Problems

\(g(x)=(1+kx)^{10}\) where the coeff of \(x^3\) is \(15\)
  • The coefficient of \(x^{3}= \left( \frac{10}{3} \right)(1)^7(kx)^{3}=120k^3x^3\)
  • \(120k^3x^3=15x^3\)
  • \(k^3x^3=\frac{15}{120}x^3\)
  • \(k^{3=\frac{1}{8}} \therefore k=\frac{1}{2}\)
Find the coefficient of \(x^3\) in the expansion of \((3+x)^5\)

\(^5C_{3}\times 3^{2}\times x^{3} = 90x^3\)

Find the coefficient of \(x^3\) in the expansion of \((1-x)^6\)

\(^6C_{3}\times 1^{3}\times x^{3}=20x^3\)

Find the coefficient of \(x^3\) in the expansion of \((1+x)^{10}\)

\(^{10}C_{3}\times 1^7\times x^{3}=120x^3\)

Find the coefficient of \(x^3\) in the expansion of \((1+x)^{20}\)

\(^{20}C_{3} \times 1^{17} \times x^{3}=1140x^3\)

Find the coefficient of \(x^3\) in the expansion of \(\left( 1-\frac{1}{2}x \right)^6\)

\(^6C_{3}\times 1^3\times \frac{1}{2}x^{3}=-\frac{5}{2}x^3\)

In the expansion of \((1+x)^{30}\), the coefficients of \(x^9\) and \(x^{10}\) are \(p\) and \(q\) respectively. Find the value of \(\frac{q}{p}\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x