x

The Inverse of a Linear Transformation

How to undo a linear transformation
Exam questions
  1. \(\mathbf{M=\begin{pmatrix}3 & 4 \\ 2 & -5\end{pmatrix}}\)
    \(\det \mathbf{M}=-23\)
  2. Given that \(\mathbf{A}=\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}\), describe the linear transformation given by this matrix.
    \(\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}\) = a rotation of 90\(^\circ\) anticlockwise.
  3. Transformation \(\mathbf{A}\) followed by transformation \(\mathbf{B}\) is equivalent to the transformation \(\mathbf{M}\). Find \(\mathbf{B}\).
    \(\mathbf{AB}=\mathbf{M}\)
    \(\mathbf{IB}=\mathbf{A^{-1}M}\)
    \(\mathbf{B}=\mathbf{A^{-1}M}\)
    \(\mathbf{A^{-1}}=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}\)
    \(\mathbf{B}=\begin{pmatrix}3 & 4 \\ 2 & -5\end{pmatrix}\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}=\begin{pmatrix}-4 & 3 \\ 5 & 2\end{pmatrix}\)
How many times.... Squashed problem
  • Applying the matrix \(\begin{pmatrix}\frac{1}{2} & 0 \\0 & \frac{1}{2}\end{pmatrix}\) co-ordinates halfs the co-ordiantes.
  • If we apply this matrix to the point \((2, 6)\) on the quadrilateral shown, we get the point \((1, 3)\) which is not inside the circle of radius 3 at the origin.
  • Because this is the co-ordinate with the largest x or y co-ordinate, we can test this to see how many times we should apply the matrix.
  • After applying this matrix twice to this point, we get the point \(\left( \frac{1}{2}, \frac{3}{2} \right)\) which is inside the circle at the origin.
  • Therefore we have proved that e only need to apply the matrix twice to get the quadrilateral inside the circle.
Left-click: follow link, Right-click: select node, Scroll: zoom
x