x

Expanding \((a+bx)^n\)

\(\sqrt{ 4+x }\)
  • \((4+x)^{\frac{1}{2}}\)
  • \(4^{\frac{1}{2}}\left( 1+\frac{x}{4} \right)^{\frac{1}{2}}\)
  • \(2\left( 1+\frac{x}{4} \right)^{\frac{1}{2}}\)
  • We can now expand this using the regular binomial expansion.
  • \(1+nx+\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3\dots\)
  • Multiply expansion by 2
\(\frac{1}{(2+3x)^2}\)
  • \((2+3x)^{-2}\)
  • \(2^{-2}\left( 1+\frac{3}{2}x \right)^{-2}\)
  • \(\frac{1}{4}\left( 1+\frac{3}{2} \right)^{-2}\)
  • Expand using regular binomial expansion: \(1+nx+\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3\dots\)
  • Multiple expansion by \(\frac{1}{4}\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x