x

Points of Intersection

Example Question 1
  • \(x=4at^2\)
  • \(y=a(2t-1)\)
  • Passes through (4,0)

  • \(a(2t-1)=0\)
  • \(2ta-a=0\)
  • \(2ta=a\)
  • \(2t=1\)
  • \(t=\frac{1}{2}\)

  • \(4\times a\times\frac{1}{2}^2\)
  • \(4\times\frac{1}{4}\times a=4\)
  • \(a=4\)
Find where \(x=t^2\), \(y=2t\) intercepts \(x^2+y^2-9x+4=0\)
  • \(t^4+4t^2-9t^2+4=0\)
  • \(t^4-5t^2+4=0\)
  • \(t=^+_{-}2, ^+_{-}1\)
  • Co-ordinates are \((4, 4), (4, -4), (1, 2), (1,-2)\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x