x

Partial Fractions

Partial Fractions
\(\frac{6x-2}{(x-3)(x+1)}=\frac{A}{x-3}+\frac{B}{x+1}\)
  • \(A(x+1)+B(x-3)=6x-2\)
  • \(Ax+A+Bx-3B=6x-2\)
  • \(Ax+Bx+A-3B=6x-2\)
  • \(A+B=6\)
  • \(A-3B=-2\)
  • \(4B=8\)
  • \(B=2\)
  • \(A=4\)

  • Set \(x=3\) to cancel out one fraction.
  • \(4A=16\)
  • \(A=4\)
  • Set \(x=-1\)
  • \(-4B=-8\)
  • \(B=2\)
\(\frac{6x^2+5x-2}{x(x-1)(2x+1)}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{2x+1}\)
  • \(6x^2+5x-2=A(x-1)(2x+1)+Bx(2x+1)+Cx(x-1)\)
  • Set \(x=1\)
  • \(9=3B\)
  • \(B=3\)
  • Set \(x=0\)
  • \(-2=-A\)
  • \(A=2\)
  • Set \(x=-1\)
  • \(6-5-2=4+3+2C\)
  • \(-1=7+2C\)
  • \(2C=-8\)
  • \(C=-4\)
\(\frac{5x+3}{(2x-3)(x+2)}=\frac{A}{2x-3}+\frac{B}{x+2}\)
  • \(5x+3=A(x+2)+B(2x-3)\)
  • Set \(x=-2\)
  • \(-7=-7B\)
  • \(B=1\)
  • Set \(x=0\)
  • \(3=2A-3(1)\)
  • \(2A=6\)
  • \(A=3\)
Express \(\frac{9x^2+20x-10}{(x+2)(3x-1)}\) in partial fractions.
  • \(9x^2+20x-10=A(3x-1)+B(x+2)\)
  • Set \(x=-2\)
  • Come back to this later
Express \(\frac{4-2x}{(2x+1)(x+1)(x+3)}\)

- \(4-2x=A(x+1)(x+3)+B(2x+1)(x+3)+C(2x+1)(x+1)\)

  • Sub in \(x=-\frac{1}{2}\)
  • \(4-2\left( -\frac{1}{2} \right)=A\left( -\frac{1}{2} \right)\left( \frac{5}{2} \right)\)
  • \(5=\frac{5}{4}A\)
  • \(A=4\)

Sub in \(x=-1\)
- \(6=-2B\)
- \(B=-3\)


  • Sub in \(x=-3\)
  • \(10=10C\)
  • \(C=1\)

  • Answer: \(\frac{4}{2x+1}-\frac{3}{x+1}+\frac{1}{x+3}\)

Repeated Linear Factors

Split \(\frac{9x^2}{(x-1)^2(2x+1)}\) into partial fractions

- \(9x^2=A(x-1)(2x+1)+B(2x+1)+C(x-1)^2\)

  • To find C, we sub in \(x=-\frac{1}{2}\)
  • \(\frac{9}{4}=\frac{9}{4}C\)
  • \(C=1\)

  • To find B, we sub in \(x=1\)
  • \(9=B(3)\)
  • \(B=3\)

  • To find A, we equate coefficients for \(x^2\)
  • \(2A+C=9\)
  • \(2A+1=9\)
  • \(2A=8\)
  • \(A=4\)
\(\frac{27x^2+32x+16}{(3x+2)^2(1-x)}\)
  • \(27x^2+32x+16=\frac{A}{(3x+2)}+\frac{B}{(3x+2)^2}+\frac{C}{(1-x)}\)
\(\frac{3x+4}{(1+x)(2+x)^2}\)

\(3x+4=\frac{A}{(1+x)}+\frac{B}{(2+x)}+\frac{C}{(2+x)^2}\)
\(3x+4=A(2+x)^2+B(1+x)(2+x)+C(1+x)\)


  • To find C we sub in \(x=-2\)
  • \(-2=-C\)
  • \(C=2\)

  • To find A we sub in \(x=-1\)
  • \(1=A\)
  • \(A=1\)

  • To find B we equate coefficients
  • Set \(x=0\)
  • \(4=4A+2B+C\)
  • \(2B=-2\)
  • \(B=-1\)

\(3x+4=\frac{1}{(1+x)}-\frac{1}{(2+x)}+\frac{2}{(2+x)^2}\)

Left-click: follow link, Right-click: select node, Scroll: zoom
x