x

The Chain Rule

Chain Rule
\[\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\]
How to use the Chain Rule
  • The Chain Rule can be used to differentiate composite functions. This means a function inside of another function.
  • e.g. \(\ln(\sin(x))\) has the outer function \(\ln()\) and the inner function \(\sin()\)
  • The chain rule states that:
\((3x-1)^{15}\)
  • \((3x-1)^{15}\)
  • \(15(3x-1)^{14}\times 3\)
  • \(45(3x-1)^{14}\)
\((4x^2-7)^{10}\)
  • \((4x^2-7)^{10}\)
  • \(10(4x^2-7)^9\times 8x\)
  • \(80x(4x^2-7)^9\)
\(e^{x^2+x}\)

\(e^{x^2+x}\)
\((2x+1) e^{x^2+x}\)

\(\frac{3}{(x^2-1)^4}\)
  • \(\frac{3}{(x^2-1)^4}\)
  • \(3(x^2-1)^{-4}\)
  • \(-4\times3(x^2-1)^{-5}\times 2x\)
  • \(-24x(x^2-1)^{-5}\)
  • \(\frac{-24x}{(x^2-1)^5}\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x