x

Reverse Chain Rule

\(\DeclareMathOperator{cosec}{cosec}\)

What is Reverse Chain Rule: Example
  • A function in the form: \(\frac{f^{'}(x)}{f(x)}\)
  • \(\int \frac{2x}{x^2+1} \, dx\)
  • Consider \(y=\ln |x^2+1|\)
  • \(\frac{dy}{dx}=\frac{1}{x^2+1}\times 2x\) (using chain rule)
  • = \(\frac{2x}{x^2+1}\)
  • \(\int \frac{2x}{x^2+1} \, dx=\ln |x^2+1|+c\)
Using fractions
Example 1
  • E.G. \(\int x(x^2+1)^6\, dx\)
  • Try \((x^2+1)^7\)
  • \(\frac{d}{dx}=7(x^2+1)^6\)
  • \(= 14x(x^2+1)^6\)
  • \(= \frac{1}{14}(x^2+1)^7\)
Example 2
  • E.G. \(\int \sin^4x\cos x\, dx\)
  • Try \(\sin^5x\)
  • \(\frac{d}{dx}=5\sin^4x\cos x\)
  • \(\int =\frac{1}{5}\sin^5x\)
Using \(\ln\)
Example 4
  • E.G. \(\int \frac{\cos x}{3+2\sin x}\, dx\)
  • Try \(\ln|3+2\sin x|\)
  • \(\frac{1}{3+2\sin x}\times 2\cos x\)
  • \(= \frac{2\cos x}{3+2\sin x}\)
  • This result is double of the equation we want so we put a \(\frac{1}{2}\) in front of our \(\ln\) equation we tried earlier.
  • \(\frac{1}{2}\ln|3+2\sin x|+c\)
Ex4 Q1a
  • E.G. \(\frac{e^{2x}}{e^{2x}+1}\)
  • Try: \(\ln|e^{2x}+1|\)
  • \(= \frac{1}{e^{2x}+1}\times2e^{2x}\)
  • \(= \frac{2x}{x^2+4}\)
  • So our final answer is:\(\frac{1}{2}\ln|x^2+4|+c\)
Ex4 Q1b
  • E.G. \(\frac{e^{2x}}{e^{2x}+1}\)
  • Try: \(\ln|e^{2x}+1|\)
  • \(= \frac{1}{e^{2x}}\times2e^{2x}\)
  • \(= \frac{2e^{2x}}{2e^{2x}+1}\)
  • So our final answer is:\(\frac{1}{2}\ln|e^{2x}+1|+c\)
Using \(\int kf^{'}(x)(f(x))^n \, dx\)
Given that \(\int ^\theta_{0}5\tan x \sec^4x \, dx=\frac{15}{4}\) find the exact value of \(\theta\)
  • Let \(I=\int ^\theta_{0}5\tan x \sec^4x \, dx\)
  • Let \(y=\sec^4x\)
  • \(\frac{dy}{dx}=4\sec^3x\times\sec x\tan x=4\sec^4x\times \tan x\)
  • So \(I=\left[ \frac{5}{4}\sec^4x \right]^\theta_{0}=\frac{15}{4}\)
  • \(\left( \frac{5}{4}\sec^4\theta \right)-\left( \frac{5}{4}\sec^40 \right)=\frac{15}{4}\)
  • \(\frac{5}{4}\sec^4\theta-\frac{5}{4}=\frac{15}{4}\)
  • \(\frac{5}{4}\sec^4\theta=\frac{20}{4}\)
  • \(\sec^4\theta=4\)
  • \(\sec\theta=^+_{-}\sqrt{ 2 }\)
  • \(\theta=\frac{\pi}{4}\)
Practice Questions
\(\frac{x}{x^2+4}\)
  • Try \(\ln |x^2+4|\)
  • \(\frac{1}{x^2+4}\times 2x\)
  • \(\frac{2x}{x^2+4}\)
  • Add constant to adjust:
    \(\frac{1}{2}\ln |x^2+4|\)
\(\frac{e^{2x}}{e^{2x}+1}\)
  • Try \(\ln |e^{2x}+1|\)
  • \(\frac{dy}{dx}=\frac{1}{e^{2x}+1}\times e^{2x}\)
  • \(=\frac{2e^{2x}}{e^{2x}+1}\)
  • Adjust with constant
  • \(\frac{1}{2}\ln |e^{2x}+1|\)
\(\frac{x}{(x^2+4)^3}\)
  • Try \((x^2+4)^{-2}\)
  • \(\frac{dy}{dx}=(x^2+4)^{-3}\times 2x\)
  • \(2x(x^2+4)^{-3}\)
  • \(\frac{2x}{(x^2+4)^3}\)
  • Adjust with constant
  • \(\frac{1}{2}(x^2+4)^{-2}\)
\(\frac{e^{2x}}{(e^{2x}+1)^3}\)
  • Let \(y=(e^{2x}+1)^{-2}\)
  • \(\frac{dy}{dx}=-2(e^{2x}+1)^{-3}\times2e^{2x}\)
  • \(=-4e^{2x}(e^{2x+1})^{-3}\)
  • \(=\frac{-4e^{2x}}{(e^{2x}+1)^{-3}}\)
  • Add constant to adjust
  • \(-4(e^{2x}+1)^{-2}\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x