x

Simplifying \(a \cos(x)^+_{-} b \sin(x)\)

\(\DeclareMathOperator{cosec}{cosec}\)

R formulae
  • For positive values of \(a\) and \(b\):
  • \(a \sin x^+_{-}b\cos x\) can be expressed in the form \(R\sin(x^+_{-}\alpha)\)
  • \(a \cos x^+_{-}b\sin x\) can be expressed in the form \(R\cos(x^-_{+}\alpha)\)
  • \(R>0\) and \(0<\alpha<90^{\circ}\) or \(\frac{\pi}{2}\)
  • Where \(R\cos\alpha=a\), \(R\sin\alpha=b\), \(R=\sqrt{ a^2+b^2 }\)
Express \(2\cos\theta+5\sin\theta\) in the form \(R\cos(\theta-\alpha)\)
  • \(2\cos\theta+5\sin\theta\equiv R\cos\theta \sin\alpha+R\sin\theta \cos\alpha\)
  • \(R\cos\alpha=2\) and \(R\sin\alpha=5\)
  • \(\frac{R\sin\alpha}{R\cos\alpha}=\frac{5}{2}\)
  • \(\tan\alpha=\frac{5}{2}\)
  • \(\alpha=68.2^{\circ}\)
  • \(R=\sqrt{ a^2+b^2 }=\sqrt{ 29 }\)
  • \(\equiv \sqrt{ 29 }\cos(\theta-68.2)\)
Show that you can express \(3\sin x+4\cos x\) in the form \(R\sin(x+\alpha)\) and in the form \(R\cos(x-\alpha)\)
  • Let \(3\sin x+4\cos x\equiv R\sin x\cos\alpha+R\cos x\sin\alpha\)
  • So \(R\cos\alpha=3\) and \(R\sin\alpha=4\)
  • \(\tan\alpha=\frac{4}{3}\)
  • \(\alpha=53.1^{\circ}\)
  • \(R=\sqrt{ 3^2+4^2 }=5\)
  • Therefore: \(3\sin x+4\cos x=5\sin(x+53.1^{\circ})\)

  • \(3\sin x+4\cos x\equiv R\cos x\cos\alpha+\sin x\sin\alpha\)
  • \(R\cos\beta=4\)
  • \(R\sin\beta=3\)
  • \(\frac{R\sin\beta}{R\cos\beta}=\frac{3}{4}\)
  • \(\tan\beta=\frac{3}{4}\)
  • \(\beta=36.9^{\circ}\)
  • \(R=\sqrt{ 3^2+4^2 }\)
  • \(3\sin x+4\cos x=5\cos(x-36.9^{\circ})\)
\(5\sin\theta+12\cos\theta\equiv R\sin(\theta+\alpha)\)
  • \(5\sin\theta+12\cos\theta\equiv R\sin x\cos\alpha+R\cos x\sin\alpha\)
  • \(R\sin\alpha=5\) and \(R\sin\alpha=12\)
  • \(\tan\alpha=\frac{12}{5}\)
  • \(R=\sqrt{ 12^2+5^2 }=13\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x