x

Logarithms and Non-Linear Data

Example 19
  • First we rearrange \(P=aR^n\).
  • \(\log P=\log(aR^n)\)
  • Use the multiplication law: \(\log P=\log a+\log R^n\)
  • Use the other law: \(\log P=\log a+n\log R\)
  • Rearrange into \(y=mx+c\) form: \(\log P= n\log R+\log a\)

  • Now we have to estimate \(a\) and \(n\).
  • \(a\) is where the line on the graph intercepts the y axis. This means that \(a=6.2\).
  • \(n\) is the gradient on the graph, therefore \(n=-0.67\) on here.
Left-click: follow link, Right-click: select node, Scroll: zoom
x