x

3D Coordinates

3D Pythagoras
\[a^2+b^2=c^2$$ $$\to$$ $$a^2+b^2+c^2=d^2\]
Distance between two points in 3D
\[d=\sqrt{ (\Delta x)^2+(\Delta y)^2+(\Delta z)^2 }\]
Find the distance from the origin to the point \(\mathbf{P}(7,7,7)\)

\(7^2+7^2+7^2=147\)
\(\text{Distance}=\sqrt{ 147 }\)

The coordinates of \(A\) and \(B\) are \((5,3,-8)\) and \((1,k,-3)\) respectively. Given that the distance from \(A\) to \(B\) is \(2\sqrt{ 10 }\), find the possible values of \(k\)
  • \((3\sqrt{ 10 })^2=(1-5)^2+(k-3)^2+(-3--8)^2\)
  • \(90=16+(k-3)^2+25\)
  • \(49=k^2-6k+9\)
  • \(k^2-5k-40=0\)
  • \(k=10\), \(k=-4\)
Angle between a vector and the x-axis

\(\(\cos\theta _{x}=\frac{x}{|\mathbf{a}|}\)\)
- Where \(\mathbf{a}\) is the vector and \(x\) is the x coordinate of the vector

Left-click: follow link, Right-click: select node, Scroll: zoom
x