x

Determinants

2x2 matrices

Matricies as a function
  • Matrices can be thought of as a function to transform a point.
  • \(\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix}=\begin{pmatrix}3 \\ 7\end{pmatrix}\)
  • Now the question is, is there an inverse function that can transform the point (3, 7) back into it's original (1, 1)?
  • This matrix would be called the inverse matrix.
Determinants
  • The determinant of a matrix \(\mathbf{A}=\begin{pmatrix}a & b \\ c & d\end{pmatrix}\) is det\((\mathbf{A})=|\mathbf{A}|=ad-bc\)
  • If det\((\mathbf{A})=0\), then \(\mathbf{A}\) is a singular matrix and it does not have an inverse.
  • If det\((\mathbf{A})\) \(\cancel{ = }0\), then \(\mathbf{A}\) is a non-singular matrix and does have an inverse.
Determinant Questions 2x2
  1. Given that \(\mathbf{A}\) is singular, find the value of \(p\).
    \(\mathbf{A}=\begin{pmatrix}4 & p+2 \\ -1 & 3-p\end{pmatrix}\)
    \((12-4p)-(-p-2)=12-4p+p+2=0\)
    \(14-3p=0\)
    \(14=3p\)
    \(p=\frac{14}{3}\)
  1. \(\mathbf{A}=\begin{pmatrix}a & -5 \\ 2 & a+4\end{pmatrix}\) where \(a\) is real.
    \(\det(\mathbf{A})=a^2+4a+10\)
    \(b^2-4ac\)
    \(4^2-40<0\)
    Therefore \(A\) is non-singular.

3x3 matrices

3x3 Matrices

\(\(\begin{pmatrix}a & b & c \\d & e & f \\g & h & i\end{pmatrix}=a\begin{pmatrix}e & f \\h & i\end{pmatrix}-b\begin{pmatrix}d & f \\g & i\end{pmatrix}+c\begin{pmatrix}d & e \\g & h\end{pmatrix}\)\)

1.
2.
3.

\(\mathbf{A}=\begin{pmatrix}3 & k & 0 \\ -2 & 1 & 2 \\ 5 & 0 & k+3\end{pmatrix}\). Given that A is singular, find all values of \(k\)
  • \(3\begin{pmatrix}1 & 2 \\ 0 & k+3\end{pmatrix}-k\begin{pmatrix}-2 & 2 \\ 5 & k+3\end{pmatrix}+0\text{ (irrelevant)}\)

  • \(3(k+3)-k(-2k-16)=3k+9+2k^2+16k=2k^2+19k+9\)

  • \((2k+1)(k+9)=0\)

  • \(k=-\frac{1}{2}\), \(k=-9\)

Minors

Minors
  • To find the minor of an element of a 3x3 matrix, cross out the rows and columns from where your element is, then put the rest of the elements not crossed out into a 2x2 matrix.
  • Find the determinant of this 2x2 matrix, and this value is the minor of the element you started with.
Finding Minors

Find the minor of \(k\) in this matrix.

- \(\begin{pmatrix}2 & 9 & -3 \\ 5 & k & 0 \\ 3 & -9 & 7\end{pmatrix}\)

- Form into new matrix:

- New matrix = \(\begin{pmatrix}2 & -3 \\ 3 & 7\end{pmatrix}\)

- Determinant of this matrix = \(14-(-9)=23\)

- \(23\) is the minor of the element \(k\)

Left-click: follow link, Right-click: select node, Scroll: zoom
x