x

Integration by parts

\(\DeclareMathOperator{cosec}{cosec}\)

Equation

\(\(\int u\frac{dv}{dx} \, dx =uv-\int v\frac{du}{dx} \, dx\)\)

- The \(x\) part (the part which can disappear) is the one which we use for \(u\)
- If part of the integral loops round (like a trig identity), then we use that part for the integration bit (\(v\)) , not the differentiation bit

\(\int x\cos x \, dx\)
  • \(u=x\)
  • \(\frac{du}{dx}=1\)
  • \(\frac{dv}{dx}=\cos x\)
  • \(v=\sin x\)

  • \(\int x\cos x \, dx=x\sin x--\cos x+c\)
  • \(=x\sin x+\cos x+c\)
\(\int x^2\ln x \, dx\)
  • \(u=\ln x\)
  • \(\frac{du}{dx}=\frac{1}{x}\)
  • \(\frac{dv}{dx}=x^2\)
  • \(v=\frac{x^3}{3}\)

  • \(\int x^2\ln x \, dx=\frac{x^3}{3}\ln x-\int x^{\cancel{ 3 }2}\times\frac{1}{\cancel{ x }} \, dx\)
  • \(=x^3\ln x-\int \frac{x^2}{3} \, dx\)
  • \(=\frac{x^3}{3}\ln x-\frac{x^3}{9}+c\)
\(\int x^2e^x \, dx\)
  • \(u=x^2\)
  • \(\frac{du}{dx}=2x\)
  • \(\frac{dv}{dx}=e^x\)
  • \(v=e^x\)

  • \(=x^2e^x-\int e^x2x \, dx\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x