x

Equation of a Line in Three Dimensions

Vectors in 3D

\(\(\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}\)\)
- \(\mathbf{a}\) is the position vector to start.
- \(\mathbf{b}\) is the direction vector that determines which direction we are travelling in.
- \(\lambda\) is the variable scalar that allows us to get to any point on our line.
- \(\mathbf{r}\) is a position vector of our final point on the line.

Vectors Problem

\(l_{1}: \mathbf{r}=\begin{pmatrix}3 \\ 0 \\ -2\end{pmatrix}+\lambda \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}\)
Find the vector equation of a line parallel to \(l_{1}\) which passes through \((2, 5, 1)\)
\(l_{2}: \mathbf{r}=\begin{pmatrix}2 \\ 5 \\ 1\end{pmatrix}+\lambda \begin{pmatrix}1 \\ 1 \\ 0 \end{pmatrix}\)
- This works because the start position is different, but the direcion vector is the same as \(l_{1}\) which means they will be parallel.

Another vectors problem

\(l_{1}: \mathbf{r}=\begin{pmatrix}-1 \\ 0 \\ 3\end{pmatrix}+\lambda \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}\)
Find the coordiantes of the points on \(l_{1}\) which are a distance of 3 away from (3, 4, 4).

- Generic point on line: \(\begin{pmatrix}-1+\lambda \\\lambda \\3\end{pmatrix}\)
- Point we are finding about: \((3, 4, 4)\)
- Distance between: \(\sqrt{ (-1+\lambda-3)^3+(\lambda-4)^2+(3-4)^2 }=3\)
- \(\lambda^2-8\lambda+12=0\)
- Solve for \(\lambda\) gives us: \(\lambda=2\) or \(\lambda=6\)
- Sub back into our generic equation:
If \(\lambda=2 \to (1,2,3)\)
If \(\lambda=6\to(5,6,3)\)

The straight line has vector equation: \(\mathbf{r}=(3i+2j-5k)+t(i-6j-2k)\). Given that the point \((a,b,0)\) is on \(\mathbf{r}\), find \(a\) and \(b\)
  • \(\begin{pmatrix}3+t \\ 2-6t \\ -5-2t\end{pmatrix}\)
  • \(\therefore\begin{pmatrix}3+t \\ 2-6t \\ -5-2t\end{pmatrix}=\begin{pmatrix}a \\ b \\ 0\end{pmatrix}\)
  • This means that \(-5-2t=0\)
  • Rearrange for \(t\): \(t=-\frac{5}{2}\)
  • Solve simultaneously
  • \(a=3+t\)
  • \(b=2-6t\)
  • \(a=\frac{1}{2}\)
  • \(b=17\)
The straight line \(l\) has vector equation: \(\mathbf{r}=(2i+5j-3k)+\lambda(6i-2j+4k)\). Show that another equation for \(l\) is \(\mathbf{r}=(8i+3j+k)+\mu(3i-j+2k)\)
  • Directional part of \(d_{1}\) = \(\begin{pmatrix}6 \\ -2 \\ 4\end{pmatrix}\)
  • Directional part of \(d_{2}=\begin{pmatrix}3 \\ -1 \\ 2\end{pmatrix}\)
  • \(d_{1}=2d_{2}\)
  • Since they are multiples of one another, they go in the same direction.
  • We choose a value of \(\lambda = 0\): \(r_{1}=\begin{pmatrix}2 \\ 5 \\ -3\end{pmatrix}\)
  • We now need to find a value of \(\mu\) that gives us \(\begin{pmatrix}2 \\ 5 \\ -3\end{pmatrix}\)
  • \(\begin{pmatrix}2 \\ 5 \\ -3\end{pmatrix}=\begin{pmatrix}8+3\mu \\3-\mu \\1+2\mu\end{pmatrix}\)
  • Choose one to solve: \(8+3\mu=2\)
  • \(\mu=-2\)
  • It works for the other two equation \(\therefore\) it works.
A Cartesian Equation is an equation with only \(x, y, z\) and nothing else (like \(\lambda\) and \(\mu\))

If \(\mathbf{a}=\begin{pmatrix}a_{1} \\a_{2} \\a_{3}\end{pmatrix}\) and \(\mathbf{b}=\begin{pmatrix}b_{1} \\b_{2} \\b_{3} \\\end{pmatrix}\) and \(\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}\) is equation of a straight line, the Certesian form is \(\(\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}\)\)

Find the Cartesian Equation of the line with equation \(\mathbf{r}=\begin{pmatrix}2 \\ 5 \\ 0\end{pmatrix}+\lambda \begin{pmatrix}1 \\ 3 \\ -2\end{pmatrix}\)
\[\frac{x-2}{1}=\frac{y-5}{3}=\frac{z}{-2}\]
Find the vector equation of the cartesian line equation \(y=3x+2\)
\[\begin{pmatrix}0 \\2\end{pmatrix}+\lambda \begin{pmatrix}1 \\3\end{pmatrix}\]
Find the vector equation of \(\frac{x-2}{3}=\frac{y+5}{1}=\frac{z}{4}\)
  • \(a_{1}=2\)
  • \(a_{2}=-5\)
  • \(a_{3}=0\)
  • \(b_{1}=3\)
  • \(b_{2}=1\)
  • \(b_{3}=4\)
  • \(\begin{pmatrix}x \\ y \\ z\end{pmatrix}=\begin{pmatrix}2 \\ -5 \\ 0\end{pmatrix}+\lambda \begin{pmatrix}3 \\ 1 \\ 4\end{pmatrix}\)
Find the points where any of these vectors intersect

\(\(\mathbf{a}=\begin{pmatrix}4 \\0 \\-2\end{pmatrix}+\alpha \begin{pmatrix}-1 \\1 \\4\end{pmatrix}\)\)
\(\(\mathbf{b}=\begin{pmatrix}1 \\3 \\10\end{pmatrix}+\beta \begin{pmatrix}-2 \\-1 \\2\end{pmatrix}\)\)
\(\(\mathbf{c}=\begin{pmatrix}2 \\-1 \\0\end{pmatrix}+\gamma \begin{pmatrix}1 \\2 \\2 \end{pmatrix}\)\)

1. \(\begin{pmatrix}4-\alpha \\\alpha \\-2+4\alpha\end{pmatrix}=\begin{pmatrix}1-2\beta \\3-\beta \\10+2\beta\end{pmatrix}\)
\(4-\alpha=1-2\beta\) (1)
\(\alpha=3-\beta\) (2)
\(-2+4\alpha=10-2\beta\) (3)
\((1)+(2): 4=4-3\beta\)
\(\beta=0\)
\(\alpha=3\)
Therefore \(\mathbf{a}\) and \(\mathbf{b}\) intersect at point \((1, 3, 10)\)


This would now be done for pair \(\mathbf{a}\) and \(\mathbf{c}\) as well as pair \(\mathbf{b}\) and \(\mathbf{c}\)

Left-click: follow link, Right-click: select node, Scroll: zoom
x