x

Arithmetic Sequences

Equation for Arithmetic Sequences
\[U_{n}=a+(n-1)d\]
Find the nth term of [40, 35, 30, 25
  • \(a=40\)
  • \(d=-5\)
  • \(U_{n}=40+(n-1)(-5)\)
  • \(U_{n}=40-5n+5\)
  • \(U_{n}=45-5n\)
Exercise 3a:1
  1. \(a=7\), \(d=5\)
  2. \(a=7\), \(d=-2\)
  3. \(a=7.5\), \(d=0.5\)
  4. \(a=-9\), \(d=1\)
Exercise 3a:2
  1. nth term: \(2n+3\), 10th term :\(23\)
  2. nth term: \(3n+2\), 10th term: \(32\)
  3. nth term: \(-3n+27\), 10th term: \(-3\)
  4. nth term: \(4n-5\), 10th term: \(35\)
  5. nth term: \(xn\), 10th term: \(10x\)
  6. nth term: \(a+(n-1)d\), 10th term: \(a+9d\)
Exercise 3a:3
  1. \(22\) terms
  2. \(40\) terms
  3. \(39\) terms
  4. \(46\) terms
Exercise 3a:4
  • \(a=14\)
  • \(a+3d=32\)
  • \(14+3d=32\)
  • \(d=6\)
Exercise 3a:5
  • \(q+5p=9\)
  • \(q+8p=11\)
  • \(3p=2\)
  • \(p=\frac{2}{3}\)
  • \(q=9-\frac{10}{3}\)
  • \(q=\frac{17}{3}\)
Exercise 3a:6
  • \(a+2d=30\)
  • \(a+8d=9\)
  • \(6d=21\)
  • \(d=3.5\)
  • \(a=23\)
  • \(23+3.5n-3.5<0\)
  • \(19.5<-3.5n\)
  • \(n=6\)
  • \(19.5-21=-1.5\)
  • First negative term is \(-1.5\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x