x

Examples

Laws of Logs
  • \(\log_{a}n=x\)
  • \(a^x=n\)
  • \(\log_{a}x+\log_{a}y=\log_{a}xy\)
  • \(\log_{a}x-\log_{a}y=\log_{a} \frac{x}{y}\)
  • \(\log_{a}(x^k)=k\log _a(x)\)
  • \(\log_{a} \frac{1}{x}=\log_{a}x^{-1}=-\log _ax\)
  • \(\log_{a}a=1\)
  • \(\log_{a}1=0\)

Exercise 14B

Exercise 14B Q1
  1. 2.71828
  2. 54.59815
  3. 0.00004
  4. 1.22140
Exercise 14B Q2

Exercise 14B Q3

Exercise 14D

Exercise 14D Q1
  1. \(4^4=256\) is the same as \(\log_{4}256=4\)
  2. \(3^{-2}=\frac{1}{9}\) is the same as \(\log_{3} \frac{1}{9}=-2\)
  3. \(10^6=1000000\) is the same as \(\log 1000000=6\)
  4. \(11^1=11\) is the same as \(\log_{11}11=1\)
  5. \((0.2)^3=0.008\) is the same as \(\log_{0.2}0.008=3\)
Exercise 14D Q2
  1. \(\log_{2}16=4\) is the same as \(4^2=16\)
  2. \(\log_{5}25=2\) is the same as \(5^2=25\)
  3. \(\log_{9}3=\frac{1}{2}\) is the same as \(9^{\frac{1}{2}}=3\)
  4. \(\log_{5}0.2=-1\) is the same as \(5^{-1}=0.2\)
  5. \(\log 100000=5\) is the same as \(10^5=100000\)
Exercise 14D Q3
  1. \(\log_{2}8=3\)
  2. \(\log_{5}25=2\)
  3. \(\log 10000000=7\)
  4. \(\log_{12}12=1\)
  5. \(\log_{3}729=5\)
  6. \(\log_{10}\sqrt{ 10 }=\frac{1}{2}\)
  7. \(\log_{4}0.25=-1\)
  8. \(\log_{0.25}16=-2\)
  9. \(\log_{a}a^{10}=10\)
  10. \(\log_{\frac{2}{3}} \frac{9}{4}=2\)
Exercise 14D Q4
  1. \(\log_{5}x=4\) therefore \(x=5^4=625\)
  2. \(\log_{x}81=2\) therefore \(x=81^{\frac{1}{3}}=3\)
  3. \(\log_{7}x=1\) therefore \(x=7\)
  4. \(\log_{2}(x-1)=3\) therefore \(x=2^3+1=9\)
  5. \(\log_{3}(4x+1)=4\) therefore \(x=\frac{(3^4)-1}{4}=20\)
  6. \(\log_{x}2x=2\) therefore \(x=2\) because \(\log_{2}4=2\)
Exercise 14D Q5
  1. \(\log_{9}230=2.475\)
  2. \(\log_{5}33=2.173\)
  3. \(\log_{10}1020=3.009\)

Exercise 14E

Exercise 14E Q1
  1. \(\log_{2}7+\log_{2}3=\log_{2}21\)
  2. \(\log_{2}36-\log_{2}4=\log_{2}9\)
  3. \(3\log_{5}2+\log_{5}10=\log_{5}80\)
  4. \(2\log_{6}8-4\log_{6}3=\log_{6} \frac{64}{81}\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x