Trigonometric Identities
\(\(x^2+y^2=1\)\)
On a unit circle,
- the sin() of an angle is the x co-ordinate of the point
- the cos() of an angle is the y co-ordinate of the point
- the tan() of an angle is the gradient of the line drawn to the point from the origin
- For \(0 < \theta < 90\), cos() is positive, sin() is positive, and tan is positive.
- For \(90 < \theta < 180\), cos() is negetive, sin() is positive, and tan is negetive.
- For \(180 < \theta < 270\), cos() is negetive, sin() is negetive, and tan is positive.
- For \(270 < \theta < 360\), cos() is positive, sin() is negetive, and tan is positive.
Sine (red), Cosine (blue) and Tangent (green)
Tables of Trigonometric Values
50 | 130 | 230 | 310 | |
---|---|---|---|---|
sin() | 0.77 | 0.77 | -0.77 | -0.77 |
cos() | 0.64 | -0.64 | -0.64 | 0.64 |
tan() | 0.19 | -0.19 | 0.19 | -0.19 |
30 | 150 | 210 | 330 | |
---|---|---|---|---|
sin() | \(1\over2\) | \(1\over2\) | \(- 1\over2\) | \(- 1\over2\) |
cos() | \(\sqrt{3}\over2\) | \(- \sqrt{3}\over2\) | \(- \sqrt{3}\over2\) | \(\sqrt{3}\over2\) |
tan() | \(\sqrt{3}\over3\) | \(- \sqrt{3}\over3\) | \(\sqrt{3}\over3\) | \(- \sqrt{3}\over3\) |
More Trigonometric Identities
First rule: \(\tan\theta\equiv \frac{\sin\theta}{\cos\theta}\)
Second rule: \(\sin^2\theta+\cos^{2}\theta\equiv 1\)
Third rule: \(a^2-b^2=(a+b)(a-b)\)
Fourth rule: \(a^4-b^4=(a^2+b^2)(a^2-b^2)\)
Examples
Square both sides:
\(\frac{\tan^2x\cos^2x}{1-\cos^2x}\equiv1\)
Use the first rule:
\(\frac{\sin^2x\cos^2x}{\cos^2x+1-\cos^2x} \equiv 1\)
Cancel the \(\cos ^2x\) on the bottom:
\(\sin^2x\cos^2x \equiv 1\)
Use the second rule:
\(1 \equiv 1\)
Expand brackets:
\(\frac{(\cos^2x+\sin^2x)(\cos^2x-\sin^2x)}{\cos^2x} \equiv 1-\tan^2x\)
\(\sin^2x+\cos^2x \equiv 1 \therefore\) we can get rid of it:
\(\frac{\cos^2x-\sin^2x}{\cos^2x} \equiv \frac{\cos^2x}{\cos^2x}-\frac{\sin^2x}{\cos^2x}\)
\(\equiv 1-\tan^2x \equiv RHS\)