x

Trigonometric Identities

\(\DeclareMathOperator{cosec}{cosec}\)

Identities
  • \[\tan^2\theta+1\equiv \frac{1}{\cos^2\theta}\]
  • \[1+\cot^2\theta\equiv \cosec^2\theta\]

  • \[\tan^2\theta=sec^2\theta-1\]
  • \[\cot^2\theta\equiv \cosec^2\theta-1\]
Solve \(\frac{\tan^2x}{\sec x}=\sec x-\cos x\)
  • \(LHS=\frac{sec^2x-1}{\sec x}\)
  • \(\frac{\sec^2x}{\sec x}-\frac{1}{\sec x}\)
  • \(\sec x-\cos x\)
  • \(=RHS\)
Prove the identity \(\frac{\tan^2x}{\sec x+1}\equiv \sec x-\cos^2x-\sin^2x\)
  • \(LHS=\frac{\sec^2x-1}{\sec x+1}\)
  • \(\frac{\cancel{ (\sec x+1) }(\sec x-1)}{\cancel{ \sec x+1 }}\)
  • \(\sec x-1\)
  • \(\sec x-(\sin^2x+\cos^2x)\)
  • \(\sec x-\sin^2x-\cos^2x\)
  • \(=RHS\)
Prove the identity \(\cosec^4\theta-\cot^4\theta\equiv\frac{1+\cos^2\theta}{1-\cos^2\theta}\)
  • \(LHS=\cosec^4\theta-\cot^4\theta\)
  • \(=(\cosec^2\theta+\cot^2\theta)(\cosec^2\theta-\cot^2\theta)\)
  • \(=\cosec^2\theta+\cot^2\theta\)
  • \(=\frac{1}{\sin^2\theta}+\frac{\cos^2\theta}{\sin^2\theta}\)
  • \(=\frac{1}{\sin^2\theta}+\frac{\cos^2\theta}{\sin^2\theta}\)
  • \(=\frac{1+\cos^2\theta}{\sin^2\theta}\)
  • \(=\frac{1+\cos^2\theta}{1-\cos^2\theta}=RHS\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x