x

Partial Fractions

\(\DeclareMathOperator{cosec}{cosec}\)

Integrating Partial Fractions
  • You can integrate algebraic fractions by converting them to partial fractions first.
\(\int \frac{x-5}{(x+1)(x-2)} \, dx\)
  • \(x-5=A(x-2)+B(x+1)\)
  • Let \(x=-1\):
    \(-6=-3A\)
    so \(A=2\)
  • Let \(x=2\):
    \(-3=B(3)\)
    So \(B=-1\)
  • So \(\int \frac{x-5}{(x+1)(x-2)} \, dx=\int \left( \frac{2}{x+1}-\frac{1}{x-2} \right) \, dx\)
  • \(=2\ln |x+1|-\ln |x-2|+c\)
  • \(=\ln |\frac{(x+1)^2}{x-2}|+c\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x