x

Addition Formulae

\(\DeclareMathOperator{cosec}{cosec}\)

The Formulae
  • \[\sin(A+B)\equiv\sin A\cos B+\cos A\sin B\]
  • \[\cos(A+B)\equiv \cos A\cos B-\sin A\sin B\]
  • \[\tan(A+B)\equiv \frac{\tan A+\tan B}{1-\tan A\tan B}\]
  • \[\sin(A-B)\equiv\sin A\cos B-\cos A\sin B\]
  • \[\cos(A-B)\equiv \cos A\cos B+\sin A\sin B\]
  • \[\tan(A-B)\equiv \frac{\tan A-\tan B}{1+\tan A\tan B}\]
Show using the formula for \(\sin(A-B)\) that \(\sin(15^{\circ})=\frac{\sqrt{ 6 }-\sqrt{ 2 }}{4}\)
  • \(\sin(A-B)=\sin A\cos B-\cos A\sin B\)
  • \(\sin(45-30)=\sin45\cos30-\sin30\cos45\)
  • \(=\left( \frac{\sqrt{ 2 }}{2}\times \frac{\sqrt{ 3 }}{2} \right)-\left( \frac{1}{2}\times \frac{\sqrt{ 2 }}{2} \right)\)
  • \(=\frac{\sqrt{ 6 }}{4}-\frac{\sqrt{ 2 }}{4}\)
  • \(=\frac{\sqrt{ 6 }-\sqrt{ 2 }}{4}\)
Show that \(\cos3\theta=4\cos^3\theta-3\cos\theta\)
  • \(LHS=\cos3\theta=\cos(\theta+2\theta)\)
  • \(=\cos\theta \cos2\theta-\sin\theta \sin2\theta\)
  • \(=\cos\theta(2\cos^2\theta-1)-\sin\theta(2\sin\theta \cos\theta)\)
  • \(=2\cos^3\theta-\cos\theta-2\sin^2\theta \cos\theta\)
  • \(=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta)\)
  • \(=4\cos^3\theta-3\cos\theta=RHS\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x