Roots of a Quartic Equation
The big rules! (Quartic)
- \(\alpha+\beta+\gamma+\delta=-\frac{b}{a}\)
- \(\alpha\beta+\alpha\gamma+\beta\gamma+\alpha\delta+\beta\delta+\gamma\delta=\frac{c}{a}\)
- \(\alpha\beta\gamma+\alpha\beta\delta+\alpha\gamma\delta+\beta\gamma\delta=-\frac{d}{a}\)
- \(\alpha\beta\gamma\delta=\frac{e}{a}\)
From First Principles
Not done because it would take too long. We will not be asked to prove this in an exam.
The equation \(x^4+2x^3+px^2+qx-60=0\) where x is complex and p and q are real. Roots are \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\). Given that \(\gamma=-2+4i\) and \(\delta=\gamma^*\), show that \(\alpha+\beta-2=0\) and \(\alpha\beta+3=0\).
- \(\alpha+\beta+\gamma+\delta=-\frac{b}{a}\)
- \(\alpha+\beta-2+4i-2-4i=-\frac{2}{1}\)
- \(\alpha+\beta-4=-2\)
- \(\alpha+\beta-2=0\)
- \(\alpha\beta\gamma\delta=\frac{e}{a}\)
- \(\alpha\beta(-2+4i)(-2-4i)=-60\)
- \(\alpha\beta(20)=-60\)
- \(\alpha\beta=-3\)
- \(\alpha\beta+3=0\)
Now find all roots of the equation and the values of p and q. - \(\alpha=2-\beta\)
- \((2-\beta)\beta+3=0\)
- \(-\beta^2+2\beta+3=0\)
- \(\beta^2-2\beta-3=0\)
- \(\beta=3\) or \(\beta=-1\)
- \(\alpha=-1\) or \(\alpha=3\)
Now to find p using the \(\frac{c}{a}\) proof: - \(3(-1)+3(-2+4i)+3(-2-4i)-1(-2-4i)+(-2+4i)(-2-4i)=\frac{p}{1}\)
- \(\therefore p=9\)
Now to find q using the \(-\frac{d}{a}\) proof: - \(3(-1)(-2+4i)+3(-1)(-2-4i)-1(-2+4i)(-2-4i)+3(-2+4i)(-2-4i)=-\frac{q}{1}\)
- \(\therefore q=-52\)