x

Proof by Mathematical Induction

The process
  1. Show the statement works for \(n=1\)
  2. Assume the statement is true for \(n=k\)
  3. Show if true for \(n=k\) then must be true for \(n=k+1\).
  4. Conclusion: If it is true for \(n=1\) and true for \(n=k\) then it is true for \(n=k+1\) making it true for all natural\(n\)
Prove by induction for all positive \(n\), that \(\sum_{r=1}^{n}r^3=\frac{1}{4}n^2(n+1)^2\)
  1. Sub in \(n=1\)
    \(1^2=\frac{1}{4}(1)(4)=1\)
  2. We assume equal for \(n=k\)
  3. \(\sum_{r=1}^{k+1}r^3=\sum_{r=1}^{k}r^3+(k+1)^3\)
    \(\sum_{r=1}^{k+1}r^3=\frac{1}{4}k^2(k+1)^2+(k+1)^3\)
    \(=(\frac{1}{4}k^3+\frac{1}{4}k^2)^2+(k+1)^3\)
    \(=(\frac{1}{4}k^6+\frac{1}{4}k^4)+(k+1)^3\)
    \(=\frac{1}{4}(k^6+k^4)+(k+1)^3\)


    \(=\frac{1}{4}(k+1)^2(k+1+1)^2\)
Left-click: follow link, Right-click: select node, Scroll: zoom
x