x

Constant Acceleration formulae 2

SUVAT Equations
  • \(s\) is displacement
  • \(u\) is initial velocity
  • \(v\) is final velocity
  • \(a\) is acceleration
  • \(t\) is time
Equations
\[s=t(\frac{v+u}{2})$$ $$v=u+at$$ $$v^2=u^2+2as$$ $$s=ut+\frac{1}{2}at^2$$ $$s=vt-\frac{1}{2}at^2\]
Example 8

A particle is moving in a straight horizontal line with constant deceleration 4 m s-2. At time t = 0 the particle passes through a point O with speed 13 m/s travelling towards a point A, where OA = 20m. Find:
a) the times when the particle passes through A
b) the value of t when the particle returns to O.

a)
- \(u=13\)
- \(s=20\)
- \(a=-4\)
- \(t=?\)

- \(s=ut+\frac{1}{2}at^2\)

- \(20=13t-\frac{1}{2}\times 4t^2\)
- \(= 13t-2t^2\)
- \(2t^2-13t+20=0\)
- \(t=\frac{5}{2}\) or \(t=4\)

b)
- Finding when \(s=0\)
- \(s=0\)
- \(u=13\)
- \(a=-4\)
- \(t=?\)

- \(s=ut+\frac{1}{2}at^2\)
- \(0=13t-2t^2\)
- \(0=t(13-2t)\)

- So \(t=0\) and \(t=\frac{13}{2}\)
- So the particle passes back through \(O\) after \(6.5\) seconds.

Left-click: follow link, Right-click: select node, Scroll: zoom
x