x

Product and Quotient Rules

The Rules

Product Rule:

\(\(\frac{d}{dx}uv=v \frac{du}{dx}+u \frac{dv}{dx}\)\)

\(\((uv)^{'}=u(v)^{'}+(u)^{'}v\)\)

Quotient Rule:

\(\(\frac{d}{dx} \frac{u}{v}= \frac{v \frac{du}{dx}-u \frac{dv}{dx}}{v^2}\)\)

Differentiating tan(x)
  • \(\tan(x)=\frac{\sin(x)}{\cos(x)}\)
  • Applying product rule:
  • \(\frac{\cos x\times \cos x-\sin x\times-\sin x}{\cos^2x}\)
  • \(\frac{\cos^2x+\sin^2x}{\cos^2x}\)
  • \(\frac{1}{\cos^2x}=sec^2x\)
Exercise 9D Q1

\(x(1+3x)^{5}\)
\(u=x\)
\(u^{'}=1\)
\(v=(1+3x)^5\)
\(v^{'}=15(1+3x)^{4}\)

\(15x(1+3x)^{4}+(1+3x)^5\)
\((1+3x)^4[15x+1+3x]\)
\((1+3x)^4\times(1+18x)\)

Example Question
  • \[\frac{dy}{dx}\frac{\sin4x}{x^3}=\frac{(4\cos4x\times x^3)-(3x^2\times \sin4x)}{x^6}\]
  • \[\frac{4\cos4x}{x^3}-\frac{3\sin 4x}{x^4}\]
Left-click: follow link, Right-click: select node, Scroll: zoom
x